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Variation in numeral systems

Some languages have numeral systems that express only approximate or inexact numerosity
Other languages have systems that express exact numerosity
Some only over a restricted range of relatively small numbers

Other languages have fully recursive counting systems that express exact numerosity over a very large range.
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Two Numeral Systems
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Numeral Systems: Universal Principles?

® Are there any universal principles common to all numeral systems?
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CLASP Guests

Ted Gibson, MIT (2016) Terry Regier, UC. Berkeley (2019)
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Language and Efficient Communication

“Languages are under pressure to be simultaneously

® informative (so as to support effective communication) and

® simple (so as to minimize cognitive load).”
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A Learning Perspective

® Human languages are observed to optimize communication efficiency in information-theoretic sense,
® Butis there a computational mechanism to explain how?
® Can agents learn an efficient communication scheme from scratch by interacting to solve a shared task?

Marr’s three levels of analysis

» Poggio (afterword to re-release of Marr(1982)): [ Computational }
“Add learning at the very top level of understanding,
above the computational level.” [ Algorithmic ]

[ Implementation J
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Reinforcement Learning & Efficient Communication
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Communicating a number

Speaker

Yang Xu, Emmy Liu, and Terry Regier (2020).
Open Mind, 4, 57-70.


http://lclab.berkeley.edu/papers/xu-et-al-2020.pdf
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Efficiency of Numeral Systems
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A few
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n ~ p(n)
| ~ w L4
w ~ p(w|n) ‘@a@F % n ~ p(f|w)
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—— Power-law distribution (0.6182x~2%)
=== (Google ngram data

e \We restrict our game to the numerals
1 to 20, i.e N=20.

e Agents have access to a small set of
tokens.

e Tabula rasa agents.

-
- ]

e The meaning of the tokens are
created by the agents while playing 1234567 8 910111213141516 1718 19 20
the game.

Need probability estimated from
frequencies of English numerals in
Google ngram Corpus (Michel et al.
2011)
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Contextual Bandit

e [Each agent can be modelled as a Contextual Bandit.

e The agent sees a context and has to pick an action
from a set of actions.

e In our case, the context is a numeral and the actions
are different tokens/words.
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Thompson Sampling

e A common approach to bandit problems.

e The learner has a prior belief over a set of possible environments.

p(f)

e In each round the learner samples a possible environment from the posterior and acts

greedy according to it.
f~p(f|lH)

e Given an observation (action and reward) we update the posterior distribution.
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Contextual Bandits and Thompson Sampling

e Each agent has a neural network

fs(n,w)
fL (w7 ’ﬁ')

e At each round a smaller network is sampled usil
dropout (Nitish Srivastava et al., 2014).

-{S(n7w) ~ fS(naw)
fr(w,n) ~ fr(w,n)

e Each agent acts greedy w.r.t smaller network

o P (a) Standard Neural Net (b) After applying dropout.
w = argmax,, f g(n,w)

f = argmax.: f ; (w,7)
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Contextual Bandits and Thompson Sampling

e The neural networks maps context and action to expected reward.

e Update them using the mean-squared error (MSE):

MSES:_Z n'l,7w’L _7'7:)2,

MSEL — _Z 'wza i)2
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How do we define communication cost and
complexity of a numeral system?
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Communication cost

e Communication cost or expected surprisal

e How surprised the listener is by the fact that the sender used word w for numeral n on
average.

e Listener computed using Bayes formula

Ly (n) o« p(w|n)p(n)
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Complexity

e Naive approach: Number of words

e There are relationships between numeral words. We could measure complexity as the number of
rules needed to define the numeral system.
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Table 2. Grammatical components for representing numeral systems.

Component Description
c Primitive conceptc =1, 2 or 3 ) )
5 . " . " Table 4. Grammar for Kayardild (exact restricted) numeral system for the range 1-100.
x Gaussian with approximate mean
m(w) Meaning of form w Number Rule Complexity
s (w,v) Successor of w with interval v; s (w)=s (w, 1) 5
h (w) Higher than w 1 ‘warngiida’ ~ 4 3
+ Addition 2 ‘kiyarrngka’ = 2 3
Subtraction 3 ‘burldamurra’ £ 3 3
X Multiplication 4 ‘mirndinda’ £ s (‘burldamurra’) 4
% Divisi o
izan 5-100 ‘muthaa’ 4 h (‘mirndinda’) 4
p(x,n) x to the nth power s — 17
d G e —
= F definit
o .e ."?l oD Note. Each rule is composed of symbols, and each symbol adds a unit complexity of 1.
€ Set definition

Equivalence

Yang Xu, Emmy Liu, and Terry Regier (2020).
Open Mind, 4, 57-70.


http://lclab.berkeley.edu/papers/xu-et-al-2020.pdf
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Results

e We perform 3000 experiments with a vocabulary size of 10.
e |tis up to the agents to decide how many of the 10 tokens that will be used.
e Always results in an exact numeral system.

e We grouped the experiments together based complexity and computed the
consensus numeral system.

e Compared to 24 languages from non-industrial societies ( Xu et al. 2020)
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e mean *1 standard deviation.

e Process is stable. Almost all 3000
experiments gives a numeral system
which is near-optimal.

Communication cost
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Conclusions

e Our computational mechanism leads to near-optimal exact numeral systems.

e Similar to human systems with same complexity.
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Possible extensions

e Many numeral systems are recurrent and we can express any number. Can such
systems be learned?

e Exact and approximate arithmetic (Pica et al. 2004).
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Training details

10 000 epochs

100 batch size

Optimizer Adam with learning rate 0.001
Dropout 0.3

Hidden neurons 50.
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Communication cost

e \We define the communication cost as the Kullback-Leibler divergence between the sender (S)
and listener distribution (L):

Cuy(n) = KL(S||L) = X2, 5(3) log 71

e In the case of speaker certainty this reduces to the surprisal

Cy(n) = —log L, (n)
e Listener computed using Bayes formula

Ly (n) o« p(w|n)p(n)



